Tackling Type 1 Diabetes – Where Are We on Technology and Research?

This content originally appeared on diaTribe. Republished with permission.

By Andrew Briskin

Andrew Briskin joined the diaTribe Foundation in 2021 after graduating from the University of Pennsylvania with a degree in Health and Societies. Briskin is an Editor for diaTribe Learn.

At the Milken Institute 2021 Future of Health Summit, leading experts in type 1 diabetes research and innovation discussed the path toward a cure, the latest in glucose monitoring technology, and the importance of screening for type 1 diabetes.

A group of leading experts in type 1 diabetes research and innovation took part in the panel discussion, “Tackling Type 1 Diabetes: Where the Science is Heading” at the Milken Institute 2021 Future of Health Summit last month. They exchanged insights on the advantages of continuous glucose monitoring, automated insulin delivery (AID), Time in Range for better diabetes management, as well as tantalizing new possibilities for curing type 1 diabetes.

The discussion from June 22nd was moderated by diaTribe Founder Kelly Close and included:

  • Aaron Kowalski, Ph.D. – CEO, JDRF International
  • Shideh Majidi, M.D. – Assistant Professor, Pediatric Endocrinology, Barbara Davis Center for Diabetes
  • Felicia Pagliuca, Ph.D.  – Vice President and Disease Area Executive, Type 1 Diabetes, Vertex Pharmaceuticals
  • David A. Pearce, Ph.D. – President of Innovation, Research and World Clinic, Sanford Research

The panelists began by discussing how continuous glucose monitors (CGM) now provide people with type 1 diabetes even more information and the power to manage their glucose levels. CGM data provides people with crucial metrics such as Time in Range (TIR), which corresponds to the percent of time someone spends within their target glucose range – usually 70 to 180 mg/dL. This target glucose range may vary though, for example, if you are pregnant. You can learn more about the helpful metrics that CGM provides here. Alongside A1C, TIR allows more insight into your day-to-day diabetes management by showing fluctuations in glucose levels caused by factors like meals, exercise, illness, and more.

However, CGM is not perfect or widely accessible yet. The panelists touched on this issue of access to CGM and the existing disparities in care across race and type of insurance. Dr. Majidi emphasized that in populations with access to this technology, CGM use has increased from 20% to over 80% of patients over the last five years. However, some studies have shown that providers tend to prescribe technology only to certain patients due to unconscious biases about which patients may be able to handle using advanced technology.

Advocating for early and consistent training for healthcare providers on addressing these biases, as well as provider and patient education on CGM and other technologies for glucose management, Dr. Majidi said, “we need to look at these unconscious biases to start providing everyone with the opportunity to use and learn about new technology.”

The panel then explored the advantage of AID hybrid closed-loop systems. These systems combine a CGM, insulin pump, and an algorithm that allows the CGM and insulin pump to talk to each other. Dr. Kowalski said he was especially encouraged by the advancements in AID systems, emphasizing that it not only decreases the number of highs and lows, but it also removes much of the burden of diabetes management from patients and their families.

AID systems especially benefit families with children who have diabetes, reducing concerns from parents about the safety of their children during the night or at other times when the risk of hypoglycemia is high. The panelists said they were hopeful that these new innovations are bringing us closer to developing a fully closed-loop artificial pancreas, which could automatically respond to changes in glucose in real time without the need for a person to deliver manual boluses or calibrations.

Echoing their advice on how to address disparities in CGM use, the panelists noted the importance of education for healthcare providers to combat disparities in prescribing AID to ensure equal opportunity for all to achieve better health outcomes.

The discussion then shifted to the latest research towards a cure for type 1 diabetes, focusing on beta cell replacement therapies. Because type 1 diabetes occurs as a result of the body’s immune system attacking and destroying its own pancreatic beta cells (the cells that make insulin), scientists have been researching how to replenish the beta cell population from stem cells. Scientists believe that stem cells, not yet fully differentiated or mature cells, could potentially be directed to become functioning beta cells.

Dr. Pagliuca shared updates from her work at Vertex, studying stem cell-derived beta cell transplants in type 1 patients with impaired awareness of hypoglycemia. This initial study relies on systemic immunosuppressive drugs (these are drugs that “turn off” the body’s immune system so it won’t attack the implanted cells) to protect the implanted beta cells. The hope is that future studies will seek to use a different method called encapsulation, which protects beta cells from the immune system with a physical barrier, avoiding the need for immunosuppressant medications.

So far, with the successful conversion of stem cells into mature beta cells accomplished in controlled lab settings, the science has developed to the point of testing stem cell-derived beta cells in clinical trials, with Vertex first clinical trial now enrolling patients. This initiative will encompass the entire type 1 community, with Dr. Pagliuca stressing that “transitioning these breakthroughs into the clinical phase will require participation from all stakeholders, patients, researchers, and healthcare providers.”

Considering the latest research into the immunobiology of type 1 diabetes, the panelists advocated for significant increases in screening for type 1 across the general population.

Dr. Pearce advised that testing for the presence of specific autoantibodies (small molecules in the body that are the cause of the immune system attacking a person’s own beta cells) in the general population is essential for implementing prevention programs, given that the presence of at least two of these autoantibodies is a very predictive measure to assess the risk of developing type 1 diabetes.

According to him, the predictive power of these screenings make it is possible to classify an individual as having type 1 diabetes years in advance of any symptoms, even while they still have normal glycemic control. In this way, type 1 diabetes can be classified into 3 stages – stage 1 is when someone has two or more diabetes-associated autoantibodies, but normal glycemia and no symptoms. Stage 2 is when you have the autoantibodies, have begun to develop glucose intolerance or abnormal glycemia, but still no symptoms. Stage 3 is when symptoms begin and you are diagnosed with type 1 diabetes. Classifying diabetes in this way and identifying those in the early stages could increase patient involvement in clinical trials, and help connect individuals to new drugs such as teplizumab (not yet approved by the FDA), that aim to delay the onset of symptomatic type 1 diabetes or prevent it altogether.

Drs. Pearce and Kowalski agreed, recommending a screening strategy involving primary care providers and screening children during the toddler years. On the importance of this screening process for involvement in clinical trials, Dr. Kowalski noted, “Diabetes is a global problem. The voice of the patient is hugely important on new devices and therapies, and clinical trial pathways are delayed when there isn’t equal participation in the trials.”

You can watch the panel discussion and hear insights from the four incredible experts here.

Source: diabetesdaily.com

High Blood Sugar at Night: What to Do

This content originally appeared on diaTribe. Republished with permission.

By Eliza Skoler

Why do your blood sugar levels increase at night, and what you can do to prevent this? Learn strategies for managing high blood sugar levels overnight and in the morning, including healthy bedtime snacks.

For National Sleep Awareness week, we are focusing on how to regulate overnight blood glucose (sugar) levels. With the many factors that can affect your glucose levels, nighttime can be a challenge. Some people with diabetes experience high overnight levels while others fear or experience a glucose drop during sleep. Trying to keep glucose levels stable overnight will help you get more sleep and feel better – and a good night’s sleep will aid your diabetes management the next day. While this article focuses on overnight highs, you can learn more about preparing for and preventing hypoglycemia (low blood sugar) here.

Here are some tips and strategies for how people living with diabetes can get better sleep at night and avoid high blood sugar levels.

Click to jump down:
Symptoms of High Blood Sugar at Night
Is It Safe to Sleep with High Blood Sugar?
Why Does Blood Sugar Go Up at Night? 
What is the Dawn Phenomenon?
How to Stabilize Your Blood Sugar Overnight
Great Bedtime Snacks for People Living with Diabetes
What Should Your Blood Sugar be When You Wake Up?
How to Lower Morning Blood Sugar

Symptoms of High Blood Sugar at Night

If your blood sugar is high at night you may experience symptoms of hyperglycemia. Hyperglycemia, or “high glucose,” is not defined by one specific glucose level. While many people with diabetes aim to keep blood sugar levels below 180 mg/dl during the day, some people aim for the lower range of 120 or 140 mg/dl at night, when they are not eating.

At night, symptoms of hyperglycemia include:

  • Poor sleep
  • Waking up often to urinate or to drink water
  • Headache
  • Dry mouth
  • Nausea

Other symptoms of hyperglycemia that you may experience during the day or night include:

  • Frequent and excessive urination
  • Extreme thirst
  • Blurry vision
  • Confusion
  • Weakness
  • Shortness of breath

Is It Safe to Sleep with High Blood Sugar?

Glucose levels that are occasionally a little high at night generally don’t pose serious, immediate health concerns. Most people with diabetes cannot avoid some high glucose levels. However, frequent or long-term highs – particularly extremely high levels (above 250 mg/dl) – can be dangerous. It is important for people with diabetes to reduce high blood sugar as much as possible for two key reasons:

  1. Frequent hyperglycemia can lead to major health complications caused by damage to blood vessels and nerves, which can affect your eyes, heart, kidneys, and other organs. This occurs when glucose levels are too high over a long period of time.
  2. Very high glucose levels can be a sign of diabetic ketoacidosis (DKA, or high levels of ketones in your blood indicating that there is not enough insulin in your body). This occurs mainly in people with type 1 diabetes and can be life-threatening. For more information on DKA, read “Ketosis vs. Ketoacidosis: What’s the Difference.”

Why Does Blood Sugar Go Up at Night?

There are many factors that can cause your blood sugar to increase at night. For example: what food you ate during the day, how much and when you exercised, whether you ate snacks before bed, the timing of your insulin doses, and your stress level. You can experience different patterns of high blood sugar at night. You may start with high glucose when you go to bed, start the night in range but go high several hours later, or spend most of the night in range until the hours just before you wake up. By identifying your body’s patterns, you can figure out what is causing your high blood sugar and how to address it.

Common causes of a glucose increase at night include:

  • Eating too close to bedtime: whether you’re snacking or eating a late dinner, a post-meal glucose spike can lead to high glucose levels overnight. In particular, high-fat, high-carb meals (like pizza or pasta with creamy sauces) might delay glucose absorption causing an extended period of high blood sugar levels.
  • If you have type 2 diabetes, a treatment plan that doesn’t adequately address your nighttime insulin resistance or missed doses of your glucose lowering medication can cause high glucose levels at night (and often also during the day).
  • Over-correcting a low glucose level before bed. If you need to bring your glucose level back into range before you sleep, take just enough glucose to stabilize your blood sugar. Quantity-limited treatments (like glucose tablets or small candies) that will raise your glucose levels by a specific amount can be very helpful – learn more here.
  • If you take insulin, your insulin levels may be inadequate during the night. Depending on your dose and timing of basal insulin, the insulin may not last in your body until the morning. Learn about different types of insulininsulin pumps, and automated insulin delivery (AID) systems, all of which can be helpful for staying in your target glucose range overnight.
  • Taking less insulin before bedtime due to fear of low blood sugar overnight.

What is the Dawn Phenomenon?

Another reason for high nighttime blood sugar levels is the “dawn phenomenon.” The dawn phenomenon occurs early in the morning when the body naturally signals your liver to produce glucose, giving your body the energy it needs to wake up.

The hormonal changes associated with the dawn phenomenon happen to people with or without diabetes, though those without diabetes do not experience hyperglycemia. If you take insulin, you may need to try a new basal insulin or adjust the timing and amount of your basal dose (with injected insulin) or your nighttime basal rates (with an insulin pump) to cover an early morning rise.

How to Stabilize Your Blood Sugar Overnight

The most important thing you can do to stabilize your blood sugar is monitor your glucose levels at bedtime, during the night, and when you wake up to look for patterns. This will help you determine what’s going on in your body and how you can fix it. While there are many strategies people use to stabilize blood sugar at night, every person is different – you’ll have to look for trends in your body, experiment with ways to lower glucose levels over a period of time, and learn what works best for your body.

  • Check your blood sugar (or CGM) before bed. If it’s already high, your blood sugar levels may remain high throughout the night. To address this, you’ll want to start by adjusting when you eat your evening meal and what it consists of, and how much mealtime insulin you take to cover it.
    • Avoid eating lots of food close to bedtime. For diaTribe writer Adam Brown, the key to staying in range overnight is low-carb, early dinners, with no snacking after dinner.
    • Consider eating less food at night and taking more basal insulin to cover your evening meal.
  • Check your blood sugar (or CGM) during the night, between midnight and 3am. If you were in range before bed but have high glucose levels between midnight and 3am, you may need to adjust your basal insulin dosage and timing. If you are low during that time, you may experience a rebound high blood sugar later on – this is usually associated with overcorrecting the low.
    • Talk with your healthcare team about the optimal nighttime insulin regimen for you. You may need to adjust your insulin to avoid both early low blood sugar and later high blood sugar.
    • If you take basal insulin, see if you’re able to get an insulin pump or an automated insulin delivery (AID) system. AID systems will automatically adjust your basal insulin doses throughout the night to help keep your glucose levels stable.
    • For some people, a small snack before bed (with a small dose of insulin, if appropriate) can help stabilize glucose levels throughout the night and avoid an early morning high. Keep reading for a list of healthy bedtime snacks.
  • Check your blood sugar (or CGM) when you wake up. If you were in range before bed and between midnight and 3am, but have high blood sugar in the morning, you may be experiencing the dawn phenomenon or running out of insulin (or other medication).
    • If you take insulin, you may need to delay the timing of your basal dose to as close to bedtime as possible. Or, you may increase your basal rates with an insulin pump from around 3am on.
    • If you have type 2 diabetes, talk with your healthcare professional about your glucose-lowering medications to make sure that your treatment plan addresses overnight hyperglycemia.

It’s possible to experience a combination of these events – you may have high blood sugar levels at various points throughout the night. If you have a continuous glucose monitor (CGM, you’ll be able to better track your glucose levels throughout the night. You can use your CGM data to relate your behaviors to patterns in your nighttime glucose levels. Does the timing of physical activity affect your glucose levels overnight? What about food choices throughout the day, in terms of type, quantity, or timing of food? If you don’t have a CGM, the more frequently you can take a blood sugar readings the better. Learn how to get the most of your fingerstick blood sugar data here. It’s important to share your nighttime glucose observations with your healthcare team so that you can find the best ways to stabilize your blood sugar over the entire night.

For more advice on stabilizing nighttime glucose levels, read Adam Brown’s “The Overnight Blood Sugar Conundrum.”

Great Bedtime Snacks for People Living with Diabetes

For some people, a healthy bedtime snack helps to prevent glucose swings during the night. By eating a small snack that is full of protein and healthy fats (and low in carbohydrates), your body may be better able to avoid an overnight high – but if you take insulin, be sure to cover the carbohydrates in your snack even if it only requires a small dose of insulin.

Here are some snack ideas:

  • Plain nuts or seeds – try eating a small handful
  • Raw vegetables, such as carrots, celery, cucumbers, or tomatoes, with a small amount of hummus or peanut butter
  • Plain yogurt, and you can add berries or cinnamon (read about choosing a healthy yogurt here)
  • Chia seed pudding

Remember, a bedtime snack is only helpful for some people. To see if it works for you, you’ll have to carefully monitor your glucose before bed, during the night, and when you wake up.

What Should Your Blood Sugar Be When You Wake Up?

The goal of diabetes management is to keep your blood sugar levels as stable as possible. This means that when you wake up, you want your glucose to be in range and to stay in range throughout the day.

For many people with diabetes, the overall target glucose range is between 70 mg/dL to 180 mg/dL (3.9 to 10.0 mmol/L). To start the day strong, the American Diabetes Association recommends that you aim to wake up with glucose levels between 80 to 130 mg/dL. Talk with your healthcare team about your glucose targets.

How to Lower Morning Blood Sugar

Whether a morning high is caused by the dawn phenomenon or something else, here are a few things you can try to lower your blood sugar levels:

  • Physical activity when you wake up can help bring your glucose level down. Even going for a walk can be helpful.
    • To learn about exercise guidelines and glucose management strategies, click here.
    • Read Adam Brown’s take on walking – the most underrated diabetes exercise strategy.
  • Eating a light breakfast can help keep a morning high from increasing even more. Taking your mealtime insulin will help lower your blood sugar.
    • Adam Brown suggests eating a breakfast that is low in carbs, and notes that sometimes mealtime insulin has to be adjusted in the morning. One of his favorite breakfasts is chia pudding, since it has little impact on glucose levels; see what else he eats for breakfast here.
    • Catherine Newman has six popular, low-carb, delicious recipes in “The Morning Meal.”
  • Intermittent fasting and time-restricted feeding approaches to meal timing can also help people keep morning blood sugar levels in range. Read Justine Szafran’s “Intermittent Fasting: Stabilizing My Morning Blood Sugars” to learn more.
  • For additional ways to navigate mornings, read seven strategies from Adam Brown in “A Home Run Breakfast with Diabetes.”

Source: diabetesdaily.com

Tech on the Horizon: Where Will Automated Insulin Delivery (AID) be in 2021?

This content originally appeared on diaTribe. Republished with permission.

By Albert Cai

What AID systems are currently available, what can we expect in the next year, and where is AID technology headed?

Want more information just like this?

As we enter 2021, we’re taking a look at what’s ahead for automated insulin delivery (AID) systems. Because the COVID-19 pandemic delayed many clinical trials and FDA reviews in 2020, several companies are expecting to launch new AID systems in 2021. This list covers many of the most notable upcoming products, but there are likely others on the horizon – if you know of a system you think we should track, please let us know.

Click to jump to a product, organized by expected launch date. You’ll find detailed descriptions and possible launch timelines for each, reflecting US availability.

What is automated insulin delivery (AID)?

Automated insulin delivery has many names – artificial pancreas, hybrid closed loop, bionic pancreas, predictive low-glucose suspend – but all share the same goal: combining continuous glucose monitors (CGMs) with smart algorithms to automatically adjust insulin delivery via an insulin pump. AID systems aim to reduce or eliminate hypoglycemia, improve Time in Range, and reduce hyperglycemia – especially postmeal and overnight.

When thinking about the development of AID technology, it’s often helpful to think in stages.

  • Stage 1: The most basic AID system might shut off the insulin pump whenever the user’s CGM readings drop below a certain number, such as 70 mg/dl, to reduce time spent in hypoglycemia and help prevent severe hypoglycemia.
  • Stage 2: The AID system could predict when glucose is going to go low and automatically reduce or stop insulin delivery to further help prevent hypoglycemia.
  • Stage 3: The AID system may be able to automatically adjust basal insulin delivery depending on whether the user’s glucose is trending up or down, and taking into account other factors, such as insulin on board. This adjustment of basal insulin would aim to increase Time in Range (TIR), and help prevent both high and low glucose levels. At this stage, the user would still have to manually give meal boluses and correction boluses.
  • Stage 4: The AID system will be able to deliver correction boluses when glucose values are high. These small adjustment boluses would be a further step in improving TIR, with less time with hyperglycemia.
  • Stage 5: The systems will be able to detect meals and automatically deliver a system-calculated meal bolus to reduce postmeal high blood glucose levels. With the elimination of manual meal bolusing, the system is considered to be a “fully closed loop” System.

Currently available products are in stages 3-4. By the end of 2021, we may have multiple stage 4 systems available.

Medtronic MiniMed 670G and 770G – already available 

AID

Image source: diaTribe

Now available for people over the age of two.

What is it? Medtronic’s MiniMed 670G has been available since spring 2017 and was the first stage 3 AID system to be cleared by the FDA. Prior to the 670G, Medtronic released stage 1 and stage 2 systems (Medtronic MiniMed 530Gand 630G, respectively). More recently, the MiniMed 770G system was cleared in the US in September 2020. Both the MiniMed 670G and 770G systems use the same insulin adjustment algorithm, which adjusts basal insulin delivery every five minutes based on CGM readings, targeting 120 mg/dl. The target glucose level can be temporarily raised to 150 mg/dl when low blood sugar (is a concern, such as during exercise or sleepovers for children. Both systems come with Medtronic’s Guardian Sensor 3 CGM, which has seven-day wear and requires two fingerstick calibrations per day (although four are recommended). See our article from 2016 for a full breakdown on the MiniMed 670G and from September for more on the 770G.

What’s the difference between the MiniMed 670G and 770G? As mentioned, both the MiniMed 670G and 770G systems use the same insulin adjustment algorithm and the same CGM. However, the newer MiniMed 770G has an improved pump: the 770G pump includes Bluetooth connectivity and can be paired to the MiniMed Mobile smartphone app (available for the iOS and Android) for users to view their CGM and pump information without pulling out their pumps. The app also allows users to share their data with others in real-time. Note: users can only view information but cannot control the pump (e.g., deliver a bolus, adjust basal rates) from the app. Bluetooth connectivity also means the system’s insulin adjustment algorithm can be updated. Medtronic has promised current MiniMed 770G users a free upgrade to the MiniMed 780G when that system becomes available (more below). Finally, the MiniMed 670G is only cleared in the US for people over the age of seven, while the MiniMed 770G is cleared for people over the age of two.

Medtronic management recently shared that algorithms will become an increasingly important part of the diabetes ecosystem, and presumably, a key differentiator for companies – lots of exciting times ahead with AID, that is for certain.

Tandem Control-IQ – already available in US

AID

Image source: diaTribe

Now available for people six years and older.

What is it? The Control-IQ system from Tandem was cleared by the FDA at the end of 2019 and launched to customers in January 2020. It’s precursor – Basal-IQ – was cleared in 2018. The Control-IQ system uses Tandem’s t:slim X2 pump, Dexcom’s G6 CGM which requires no fingerstick calibrations, and the Control-IQ insulin adjustment algorithm. In addition to automatic basal rate adjustments and predictive insulin suspension, the Control-IQ system is the only AID system with automatic correction boluses: when it predicts glucose to be above 180 mg/dL in 30 minutes, the system will deliver 60% of the correction bolus needed to reach a target of 110 mg/dL. Control-IQ targets glucose values between 112.5 and 160 mg/dL, though users can turn on or schedule “Sleep Activity” mode to achieve 112.5-120 mg/dL by the morning. This past summer, Tandem launched the t:connect smartphone app (for iOS and Android), which allows users to check their pump and CGM data on their phones.

What’s next? With the current t:connect smartphone app, users can view information but cannot control the pump (e.g., deliver a bolus, adjust basal rates). Tandem has already submitted an updated app with pump control to the FDA and expects to launch that functionality in 2021. Tandem has also mentioned enhancements to the Control-IQ algorithm that are expected in 2021. While we haven’t heard many specifics, we believe it’s likely that these enhancements will focus on improving glycemic outcomes, personalization, and usability of the system.

Insulet Omnipod 5 – expected early-to-mid-2021 

AID

Image source: diaTribe

FDA submission is likely coming soon (if it hasn’t occurred already), and Insulet aims for a “limited” launch in early-to-mid 2021. Insulet has completed the clinical trial for Omnipod 5 but has not shared the results.

What’s new? Omnipod 5 is Insulet’s AID for its popular Omnipod disposable pumps, also called patch pumps. If you’ve been following the field, you’ll know that Insulet previously called the new system Horizon – same system, new name. Omnipod 5 uses Dexcom’s G6 CGM, and Insulet expects to launch the system with smartphone control capability; users can still opt for a dedicated controller device, since smartphone control will be available for Android users first. Insulet is working on an iPhone version for Omnipod 5, though that will not be available at launch. Insulet is also working with Tidepool (more below) on an iPhone-based AID system. Omnipod 5 will have adjustable targets between 100 to 150 mg/dl. Because the Omnipod pump will store the algorithm and communicate directly with Dexcom G6, the system will work even without the smartphone or pump controller nearby.

Medtronic MiniMed 780G – expected mid-2021

AID

Image source: diaTribe

Pivotal trial completed for 780G and presented at ADA 2020. Medtronic aims to submit the system to the FDA by January 2021 with launch coming around mid-2021 for adults (either ages 14+ or 18+).

What’s new? The MiniMed 780G will be Medtronic’s second AID algorithm and a significant upgrade over the MiniMed 670G and 770G systems. In addition to automatic basal rate adjustments, the MiniMed 780G will include automatic correction boluses and an adjustable glucose target down to 100 mg/dl. The system will also have fewer alarms and simpler operation with the goal of further increasing Time in Range. The MiniMed 770G and MiniMed 780G pumps are identical, meaning MiniMed 780G users will also be able to use the MiniMed Mobile smartphone app for viewing pump data, uploading pump data wirelessly, and updating their pump wirelessly. As the pumps are identical, Medtronic has promised that those who purchase the MiniMed 770G now will be able to wirelessly upgrade to the MiniMed 780G for free when 780G does become available. Finally, the MiniMed 780G will use the same Guardian Sensor 3 CGM as the 670G and 770G, which requires two fingerstick calibrations per day and has a seven-day wear time. As a sidenote, an improved CGM sensor is in development by Medtronic, but isn’t expected to be available when MiniMed 780G launches.

The MiniMed 780G is already available in many countries in Europe, and data from a clinical trial was presented at the ADA 2020 conference. On average, the 157 participants in the study (ages 14-75) saw their Time in Range improve by 1.4 hours per day (69% to 75%) while using the system – that’s particularly notable given the low baseline of the A1C. Speaking of A1C, the A1C improved by 0.5% (7.5% to 7%) after using the system.

Beta Bionics insulin-only iLet – expected mid-to-late-2021

AID

Image source: diaTribe

Pivotal trial underway with completion expected in the first half of 2021. Launch expected mid-to-late-2021, though this is subject to change.

What’s new? Beta Bionics is a Massachusetts-based startup developing an AID pump and algorithm called iLet. iLet will work with Dexcom and Senseonics’ CGMs (and possibly others in the future) and is designed to be especially user-friendly. diaTribe founder Kelly Close participated in an early Beta Bionics trial (2013!) and raved about the system and how easy the pump seems. At set up, users only need to enter body weight (no insulin-to-carb ratio, sensitivity factor, basal rates, etc.), and the system will learn more over time. To bolus, users will use icons to describe meals as containing more, less, or the same amount of carbs as usual (no carb counting). The insulin-only clinical trial for iLet began in the summer of 2020 and is expected to wrap up in the first half of 2021. Beta Bionics aims to launch iLet mid-to-late-2021, though this could be delayed as the FDA continues to prioritize COVID-19-related devices.

What’s next? Beta Bionics’ iLet is unique from the other pumps on this list, because it is designed to work in either insulin-only or insulin-and-glucagon configurations. With glucagon, Beta Bionics believes the system can reduce hypoglycemia while maintaining stable glucose levels and potentially even better-than-average, lower glucose levels due to availability of glucagon. Currently, there are different views on using glucagon in an AID system – in addition to the potential for improved glycemic management, there are uncertainties around glucagon pricing and availability. Regardless, the insulin-and-glucagon version of iLet is still a few years away.

Tidepool Loop – launch timing unclear

AID

Image source: diaTribe

Online observational study completed, and launch timeline depends on FDA progress.

What’s new? Unlike the others in this list, Tidepool is a non-profit and is working on the AID algorithm only; Tidepool does not have its own insulin pump or its own pump and CGM combination (like Medtronic). About two years ago, Tidepool announced plans to submit the do-it-yourself (DIY) Loop app to the FDA to become an officially supported app available on the Apple App Store, compatible with in-warranty, commercially available pumps and CGMs. For now, DIY Loop is a free, publicly available, open-source, non-FDA-approved AID system that works with Dexcom and Medtronic CGMs and old Medtronic and Insulet pumps. Read about Adam Brown’s experience using DIY Loop here. For those who are very interested in the project, there is a great deal to learn from notes that Tidepool shares about its communications with FDA – the latest notes are from a mid-2020 meeting.

Initially, Tidepool plans to launch with Insulet Omnipod and Dexcom G6 compatibility. To set it apart from the DIY-version, Tidepool Loop will have different colors, guardrails around certain settings, and a built-in tutorial for new users. A 12-month, completely virtual study was performed with Loop users and will support Tidepool’s submission of Loop to the FDA. The six-month data was presented at ATTD 2020 showing a Time in Range increase of about 1.4 hours per day (67% to 73%) with Loop. Tidepool also announced in November, 2020 that its human factors study had also been completed – this is another required step of the FDA submission. Much of what Tidepool is doing is unprecedented, so the launch timing is unclear.  In an update on January 8th, Tidepool shared that it has now completed FDA submission of Loop.

Source: diabetesdaily.com

Automated Insulin Delivery: Six Universal Observations and Understandings

This content originally appeared on diaTribe. Republished with permission.

By Laurel Messer

Six universal facts about automated insulin delivery systems, and the things you should keep in mind about this revolutionary technology

Automated insulin delivery (AID) systems are moving towards the forefront of diabetes management. AID systems combine continuous glucose monitors (CGM) with smart algorithms to automatically adjust insulin delivery.

The Tandem Control-IQ system was recently cleared by the FDA, and the Insulet Horizon and Medtronic Advanced Hybrid Closed Loop systems are beginning pivotal trials. These are encouraging developments. As more systems move through the pipeline and eventually into the commercial market, important patterns are emerging in user expectations and user experience. As a diabetes nurse, certified diabetes educator and research investigator, I, along with my team at the Barbara Davis Center, have worked with nearly every AID system in the pipeline, and other systems that will never make it to market. Here are six insights we have gleaned, which seem to be universal (thus far) to all AID systems:

1. You can always beat an AID system with compulsive diabetes management

Many people with diabetes compulsively attend to diabetes care in order to achieve ultra-tight glucose ranges – and are the first to ask about automated systems. What ends up happening is that these “super-users” are invariably frustrated that the system is not yielding the same results that they were able to achieve with their own calculations and management. An important point is that many automated systems are excellent at reducing mental burden for taking care of diabetes, excellent at reducing hypoglycemia, and adequate at improving glucose levels. Humans can beat automated systems if they attend to diabetes care near-constantly. The individuals who will likely be satisfied with AID are those who are comfortable with an A1C in the 7s or above, but they want to reduce the mental load of adjusting settings and micromanaging high glucose levels. The most important question to ask is, “Why do I want to start using an automated system?” If it is to achieve near-perfect glucose levels, the system will likely disappoint. If it is to reduce the burden of “thinking like a pancreas” all the time, it may be a good option. AID will excel at the marathon of diabetes care but may disappoint in the hour-to-hour sprint.

2. Systems work best when you let them work

Using both research and commercial systems, we have seen all the ways to “trick” AID systems—entering phantom carbohydrates, changing set points, performing manual corrections, overriding recommended doses. More often than not, these behaviors lead to glucose instability – reactionary highs and lows from the system destabilizing. All systems will perform best if they are used according to user instructions. This is difficult for the individual who would prefer to micro-adjust settings or desire control over all insulin delivery. Most systems work best when users learn to trust them.

3. Give the system a chance – 2-4 weeks before deciding long term potential

It may benefit us to think about AID like a new significant relationship – it can take some time to “settle.” I mean this both on an interaction level (learning how to respond to alerts, when to intervene, when to let it ride) and on an algorithm level (allowing the system to adjust internal algorithm parameters based on usage). In addition, programmable user settings may need some adjustment in the first few weeks of use, so working with diabetes educators can be helpful for initial set-up and early follow-up.

4. Bolusing is still king

If I could go back in time, I would caution device manufacturers against any whisper of not needing to bolus with AID systems. Bolusing is the singular most important action a person with diabetes can do to optimize insulin delivery on current and near-future automated systems. This will be true until insulin action time gets exponentially faster or artificial intelligence gets better at predicting human behavior, neither of which is on the immediate horizon. In order for people with diabetes to see the best performance on any system (automated or manual), they need to bolus before carbohydrates are consumed. Specific to AID, the timing of the bolus (prior to carb intake) is especially important, as the system will automatically increase insulin delivery after an initial rise of glucose levels, so a late bolus (e.g., after the meal) could lead to insulin stacking and hypoglycemia.

5. Rethinking low treatments

Low glucose levels (hypoglycemia) still happen when using automated systems. What is different with AID is that the system has been trying to prevent the low by reducing/suspending insulin, possibly hours before the low occurs. This means that an individual may need to consume significantly fewer carbs to bring glucose levels back into range – perhaps 5-10 grams of carb at first, reassessing 15-20 minutes later. This can be difficult when wanting to eat everything in sight; however, it can reduce the chance of rebounding into the 200s after over-treating.

6. Infusion sets are still infusion sets

While AID algorithms are revolutionary, the infusion set is not. It is the same plastic or steel cannula that occludes, kinks, or inflames. This hardware limits automated systems and can very quickly lead to hyperglycemia or diabetic ketoacidosis (DKA). It is important for people using AID to recognize signs of infusion set failure – persistent hyperglycemia, boluses that do not bring glucose levels down, ketones, vomiting, etc. Knowing how to treat ketones (via syringe injection of insulin and set change) can prevent a hospital admission or worse.

I love that the diabetes community learns from its members and experiences. Check out our Barbara Davis Center PANTHER (Practical Advanced THERapies for diabetes) website for our team’s latest insights on automated insulin delivery, and tools for people with diabetes, clinicians, and engineers.

Are you considering AID? Feel free to share this article with your healthcare team. For more information about AID systems that are currently available or in the pipeline, click here.

About Laurel

Laurel H. Messer is a nurse scientist and certified diabetes educator at the Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO. She has spent the last 15 years studying how to best utilize new diabetes technologies, and remembers fondly teaching families to wrap up their corded CGM system in a plastic shower bag for bathing. Ok, not that fondly, but look how far we have come! Dr. Messer works with the Barbara Davis Center PANTHER team (Practical Advanced Therapies for diabetes), conducting clinical research trials on promising technologies to make life better for children, adolescents, and adults living with type 1 diabetes. Get in touch at Laurel.Messer@cuanschutz.edu

Source: diabetesdaily.com

Search

+